21,292 research outputs found

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:RdSd1RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Exploring prospects of novel drugs for tuberculosis

    Get PDF
    Tuberculosis remains a disease with an enormous impact on public health worldwide. With the continuously increasing epidemic of drug-resistant tuberculosis, new drugs are desperately needed. However, even for the treatment of drug-sensitive tuberculosis, new drugs are required to shorten the treatment duration and thereby prevent development of drug resistance. Within the past ten years, major advances in tuberculosis drug research have been made, leading to a considerable number of antimycobacterial compounds which are now in the pipeline. Here we discuss a number of these novel promising tuberculosis drugs, as well as the discovery of two new potential drug targets for the development of novel effective drugs to curb the tuberculosis pandemic, ie, the coronin 1 and protein kinase G pathways. Protein kinase G is secreted by mycobacteria and is responsible for blocking lysosomal delivery within the macrophage. Coronin 1 is responsible for activating the phosphatase, calcineurin, and thereby preventing phagosome-lysosome fusion within the macrophage. Blocking these two pathways may lead to rapid killing of mycobacteri

    Robust and Efficient Uncertainty Quantification and Validation of RFIC Isolation

    Get PDF
    Modern communication and identification products impose demanding constraints on reliability of components. Due to this statistical constraints more and more enter optimization formulations of electronic products. Yield constraints often require efficient sampling techniques to obtain uncertainty quantification also at the tails of the distributions. These sampling techniques should outperform standard Monte Carlo techniques, since these latter ones are normally not efficient enough to deal with tail probabilities. One such a technique, Importance Sampling, has successfully been applied to optimize Static Random Access Memories (SRAMs) while guaranteeing very small failure probabilities, even going beyond 6-sigma variations of parameters involved. Apart from this, emerging uncertainty quantifications techniques offer expansions of the solution that serve as a response surface facility when doing statistics and optimization. To efficiently derive the coefficients in the expansions one either has to solve a large number of problems or a huge combined problem. Here parameterized Model Order Reduction (MOR) techniques can be used to reduce the work load. To also reduce the amount of parameters we identify those that only affect the variance in a minor way. These parameters can simply be set to a fixed value. The remaining parameters can be viewed as dominant. Preservation of the variation also allows to make statements about the approximation accuracy obtained by the parameter-reduced problem. This is illustrated on an RLC circuit. Additionally, the MOR technique used should not affect the variance significantly. Finally we consider a methodology for reliable RFIC isolation using floor-plan modeling and isolation grounding. Simulations show good comparison with measurements

    Dielectric branes in non-trivial backgrounds

    Full text link
    We present a procedure to evaluate the action for dielectric branes in non-trivial backgrounds. These backgrounds must be capable to be taken into a Kaluza-Klein form, with some non-zero wrapping factor. We derive the way this wrapping factor is gauged away. Examples of this are AdS_5xS^5 and AdS_3xS^3xT^4, where we perform the construction of different stable systems, which stability relies in its dielectric character.Comment: 14 pages, published versio

    The relation between bar formation, galaxy luminosity, and environment

    Full text link
    We derive the bar fraction in three different environments ranging from the field to Virgo and Coma clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma cluster are statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges of the galaxy samples studied so far.Comment: 4 pages, 2 figures. To appear in the proceedings of EWASS 2012 Special Session 4, Structure of galaxy disks shaped by secular evolution and environmental processes, ed. P. Di Matteo and C. Jog, Memorie della Societ\`a Astronomica Italiana Supplement Serie

    Performance of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors as Direct Detectors for Sub-millimeter Astronomy

    Full text link
    In the next decades millimeter and sub-mm astronomy requires large format imaging arrays and broad-band spectrometers to complement the high spatial and spectral resolution of the Atacama Large Millimeter/sub-millimeter Array. The desired sensors for these instruments should have a background limited sensitivity and a high optical efficiency and enable arrays thousands of pixels in size. Hybrid microwave kinetic inductance detectors consisting of NbTiN and Al have shown to satisfy these requirements. We present the second generation hybrid NbTiN-Al MKIDs, which are photon noise limited in both phase and amplitude readout for loading levels P850GHz10P_{850GHz} \geq 10 fW. Thanks to the increased responsivity, the photon noise level achieved in phase allows us to simultaneously read out approximately 8000 pixels using state-of-the-art electronics. In addition, the choice of superconducting materials and the use of a Si lens in combination with a planar antenna gives these resonators the flexibility to operate within the frequency range 0.09<ν<1.10.09 < \nu < 1.1 THz. Given these specifications, hybrid NbTiN-Al MKIDs will enable astronomically usable kilopixel arrays for sub-mm imaging and moderate resolution spectroscopy.Comment: 7 pages, 3 figures. Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI
    corecore